整式的乘法是指单项式与单项式、单项式与多项式以及多项式与多项式相乘。
在初中阶段,七年级数学第二章学习了整式的加减,为下一章学习一元一次方程打基础。八年级数学第十四章学习了整式的乘法,为后面学习分式打基础。
整式的乘法是利用幂的运算性质和乘法的分配律进行的运算,是今后学习数学知识的基础,要求学生一定掌握。
整式的乘法法则
1、单项式与单项式相乘的法则。单项式和单项式相乘,只要将它们的系数,相同字母的幂分别相乘,对于只在一个单项式中出项的字母,则连同它的指数一起作为积的一个因式。注意:单项式与单项式相乘的法则也适用于多个单项式相乘。
2、单项式与多项式相乘的法则。单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加。即m(a+b+c)=ma+mb+mc。
3、多项式与多项式相乘的法则。多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。即(m+n)*(a+b)=ma+mb+na+nb。
七年级数学下册第一章基本概念及公式法则
整式的乘法:包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
整式乘法法则:1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘: 先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。
整式乘法运算: 单项式乘以单项式法则:单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。 ①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式. ④.单项式乘法法则对于三个以上的单项式相乘同样适用. ⑤.单项式乘以单项式,结果仍是一个单项式. 单项式乘以多项式的运算法则:
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
本文来自作者[风雨鄢然]投稿,不代表泰博号立场,如若转载,请注明出处:https://www.staplesadv.cn/ds/35258.html
评论列表(3条)
我是泰博号的签约作者“风雨鄢然”
本文概览:整式的乘法是指单项式与单项式、单项式与多项式以及多项式与多项式相乘。在初中阶段,七年级数学第二章学习了整式的加减,为下一章学习一元一次方程打基础。八年级数学第十四章学习了整式的...
文章不错《整式的乘法是什么》内容很有帮助