解:
1/(1×2) +1/(2×3) +1/(3×4) +1/(4×5) +....+1/(49×50)
=1- 1/2+ 1/2- 1/3+ 1/3- 1/4+ 1/4+ 1/5+......+1/49-1/50
=1- 1/50
=49/50
分数裂项公式:
解:an=1/[N(N+1)]=(1/N)- [1/(N+1)](裂项)
Sn=1/(1×2) +1/(2×3) +1/(3×4) +1/(4×5)+....+1/N(N+1)
=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/N)- [1/(N+1)](裂项求和)
= 1-1/(N+1)
= N/(N+1)
扩展资料
分数的注意事项:
1、分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。
2、分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。
3、一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。
(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
百度百科-分数
基本公式为:
常用公式:
(1)1/[n(n+1)]=(1/n)- [1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]
(7)1/(√n+√n+1)=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。
举例:
分数裂项基本型求数列an=1/n(n+1) 的前n项和.
解:an=1/[n(n+1)]=(1/n)- [1/(n+1)](裂项)
则 Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)- [1/(n+1)](裂项求和)
= 1-1/(n+1)
= n/(n+1)
本文来自作者[霜一诺]投稿,不代表泰博号立场,如若转载,请注明出处:https://www.staplesadv.cn/ds/5958.html
评论列表(3条)
我是泰博号的签约作者“霜一诺”
本文概览:解:1/(1×2) +1/(2×3) +1/(3×4) +1/(4×5) +....+1/(49×50)=1- 1/2+ 1/2- 1/3+ 1/3- 1/4+ 1/4+ 1/...
文章不错《分数的拆项公式是怎么推出来的?》内容很有帮助