1、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=?
这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正把数字一个一个地相加.可这时,却传来了高斯的声音:“老师,我已经算好了!”
老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050
2、在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。
外国数学名人故事
1、《几何原本》(Elements of Euclid)
欧几里德(Euclid,前300-前275?)古希腊数学家。
本书的印刷量仅次于《圣经》,是数学史上第一本成系统的著作,也是第一本译成中文的西文名著。原名《欧几里德几何学》,明朝徐光启译时改为《几何原本》。全书13卷,从5条公设和5条公理出发,构造了几何的一种演绎体系,这种不假于实体世界,仅由一组公理实施逻辑推理而证明出定理的方法,是人类思想的一大进步。此书从写作的时代一直流传至今,对人类活动起着持续的重大影响,直到19世纪非欧几里德几何出现以前,一直是几何推理、定理和方法的主要来源。
2、《算术研究》(Disquisitiones Arithmetical,1798)
高斯(C.F.Gauss,1774-1855),德国数学家。
“数学之王”的称号可以说是对高斯极其恰当的赞辞。他与阿基米德、牛顿并列为历史上最伟大的数学家。他的名言“数学,科学的皇后;算术,数学的皇后”,贴切地表达了他对于数学在科学中的关键作用的观点。他24岁时发表了这本书,这是数学史上最出色的成果之一,系统而广泛地阐述了数论里有影响的概念和方法。由此推倒了18世界数学的理论和方法,以革新的数论开辟了通往19世纪中叶分析学的严格化道路。高斯立论极端谨慎,有3个原则:“少些;但要成熟 ”:“不留下进一步要做的事情”。
3、《几何基础》(The Fuadations of Geometry,1854)
黎曼(B.Riemann,1826-1866),德国数学家。
黎曼是19世纪最有创造力的数学家之一。虽然他没有活到40岁,著作也不多,但几乎每篇文章都开创了一个新的领域。本篇是黎曼在格丁根大学任大学讲师时的就职演讲,是数学史上最著名的演讲之一,题为“关于构成几何基础的假设”。在演讲中黎曼独立提出了非欧几里德几何,即“黎曼几何”,又称椭圆几何。他的这一关于空间几何的独具胆识的思想,对近代理论物理学发生深远的影响,成为爱因斯坦相对论的几何基础。
4、《集合一般理论的基础》(Foundations of a General Theory of Aggregates,1883)
康托尔(G.Cantor,1845-1918),德国数学家。
康托尔创立的集合论,是19世纪最伟大的成就之一。本书是康托尔研究集合论的专著。他通过建立处理数学中无限的基本技巧而极大地推动了分析和逻辑的发展,凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新的思想模式。
5、《几何基础》(The Fuadations of Geometry,1899)
希耳伯特(D.Hilbert,1862-1943),德国数学家。
希耳伯特是整个一代国际数学界的巨人。由高高斯、狄利克雷和黎曼于19世纪开创的生气勃勃的数学传统在20世纪的头30年中主要由于希耳伯特而更为显赫著名。在本书中,希耳伯特用几何学的例子来阐述公理体系的集合理论的处理方法,它标志着几何学公理化处理的转折点。希耳伯特的名言:“我必须知道,我必将知道”,总结了他献身数学并以毕生业务使之发展到新水平的激情。
6、《测度的一般理论和概率论》(General Theoey of Measure and Probability Theory,1929)
柯尔莫哥洛夫(A.N.Kolmogorov,1903-1993),苏联数学家。
柯尔莫哥洛夫是20世纪最有影响的苏联数学家。他对许多数学分支贡献了创造性的一般理论。此篇论文是研究概率的名作,在随后的50年中被人们作为概率论的完全公理而接受。在1937年又出版《概率论的解析方法》一书,阐述了无后效的随机过程理论的原理,标志着概论论发展的一个新时期。
7、《论<数学原理>及其相关系统形式不可判定命题》(On Formally Undecidble Propositions of Principia Mathematica and Related Systems,1931)
哥德尔(K.Godel,1906-1978),美籍奥地利数学家。
哥德尔在本篇中给出了著名的哥德尔证明,其内容是,要任何一个严格的数学系统中,必定有用本系统内的公理无法证明其成立或不成立的命题,因此,不能说算术的基本公理不会出现矛盾。这个证明成了20世纪数学的标志,至今仍有影响和争论。它结束了近一个世纪来数学家们为建立能为全部数学提供严密基础公理的企图。
8、《数学原理》(Elements Mathematique I-XXXIX,1939-)
本书的署名是布尔巴基(Bourbiaki),他不是一个人,而是对现代数学影响巨大的数学家集团。在本世纪30年代由法国的一群年轻数学家结合而成他们把人类长期积累的数学知识按照数学结构整理而成为一个井井有条、博大精深的体系,已出版的近40卷的《数学原理》成为一部经典著作,成为许多研究工作的出发点和参考指南,并成为蓬勃发展的数学科学的主流,这套巨著究竟何时算完,谁也说不清。但是这个体系连同布尔巴基学派对数学的其他贡献,在数学史上是独一无二的。
故事是在现实认知观的基础上,对其描写成非常态性现象。已经发生事。或者想象故事。故事一般都和原始人类的生产生活有密切关系,他们迫切地希望认识自然,于是便以自身为依据,想象天地万物都像人一样,有着生命和意志。以下是我帮大家整理的外国数学名人故事,仅供参考,大家一起来看看吧。
诺伊曼(1903—1957),美籍匈牙利数学家,美国科学院院士。
诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段有趣的故事:1913年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理—数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作是开辟了数学的一个新分支———对策论。1944年出版了他的杰出着作《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的'研制作出重要贡献。战后,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。
高斯(1777~1855),德国数学家、物理学家和天文学家,英国皇家学会会员。
高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的《算术研究》,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉。韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国着名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)着作,提出了404项科学创见,完成了4项重要发明。
高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。
欧拉(1707~1783),瑞士数学家,英国皇家学会会员。
欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作。欧拉具有惊人的记忆力。据说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论着多部。欧拉这个18世纪的数学巨星,在微积分、微分方程、几何、数论、变分学等领域都作出了巨大贡献,从而确定了他作为变分法奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上好几年。
欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。
阿基米德(约公元前287—212年),希腊物理学家、数学家。
阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡一大满盆洗澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。"
在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上……
阿基米德死后,人们整理出版了《阿基米德遗着全集》,以永远缅怀这位科学巨匠的伟大业绩。
本文来自作者[沛芹]投稿,不代表泰博号立场,如若转载,请注明出处:https://www.staplesadv.cn/ds/54783.html
评论列表(3条)
我是泰博号的签约作者“沛芹”
本文概览:1、高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+……+100=? 这下可难倒了刚学数学的小朋友们,他们按照题目的要求,正...
文章不错《数学王子高斯的故事》内容很有帮助