高中数学期望与方差公式怎么推导的?

如下:

方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。

平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)。

期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn。

高中数学期望与方差公式应用:

1)随机炒股。

随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。

2)趋势炒股。

趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。

X ~ H (n,M,N) 例 N个球 有M个黑球 取 n个黑球

则 EX = nM/N

DX=nM/N*(1-M/N)*(N-n)/(N-1)

其实可以和二项分布类比的.. 二项分布就是超几何分布的极限

①若随机变量X服从参数为n,p的二项分布,则EX=np,DX=np(1-p)

②若随机变量X服从参数为N,M,n的超几何分布,则EX=nM/N

超几何分布的方差

①若随机变量X服从参数为n,p的二项分布,则EX=np,DX=np(1-p)

②若随机变量X服从参数为N,M,n的超几何分布,则EX=nM/N

超几何分布的方差

D(X)=np(1-p)*

(N-n)/(N-1)

扩展资料:

证明:

引理一:∑{C(x,a)*C(d-x,b),x=0..min{a,d}}=C(d,a+b),考察(1+x)^a*(1+x)^b中x^d的系数即得。(另:还可以由超几何分布1=∑P(X=K),k=0,1,2....n得)

引理二:k*C(k,n)=n*C(k-1,n-1),易得。

正式证明:

EX=∑{k*C(k,M)*C(n-k,N-M)/C(n,N),k=0..min{M,n}}

=1/C(n,N)*∑{M*C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}}

//(提取公因式,同时用引理二变形,注意k的取值改变)

=M/C(n,N)*∑{C(k-1,M-1)*C(n-k,N-M),k=1..min{M,n}} (提取,整理出引理一的前提)

=M*C(n-1,N-1)/C(n,N) (利用引理一)

=Mn/N (化简即得)

百度百科-超几何分布

本文来自作者[姜明昊]投稿,不代表泰博号立场,如若转载,请注明出处:https://www.staplesadv.cn/ds/41200.html

(9)
姜明昊的头像姜明昊签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 姜明昊的头像
    姜明昊 2025年09月24日

    我是泰博号的签约作者“姜明昊”

  • 姜明昊
    姜明昊 2025年09月24日

    本文概览:如下:方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数...

  • 姜明昊
    用户092403 2025年09月24日

    文章不错《高中数学期望与方差公式怎么推导的?》内容很有帮助

联系我们

邮件:泰博号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信