1、如果是应用题就要先理清楚思路,然后列出不等式,最后再解不等式;如果是解不等式的计算题,就直接写“解”,开始写出计算过程。
2、计算过程就是利用等式的性质,把不等式的等价式子写出来,如下图所示,题目中的绝对值的地方就需要注意一下,这是一个易错点。完成。
基本不等式使用的环境就是,和定积最大、积定和最小,所以必须有和或者乘积是定值的时候才可以使用,如果不是定值,我们就可以通过增减配数的方法,构成和或者乘积是定值的情况,然后再使用基本不等式求值即可。
注意事项:
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,而且这个或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
基本不等式解题方法总结如下:
1、配凑法
基本不等式使用的环境就是,和定积最大、积定和最小,所以必须有和或者乘积是定值的时候才可以使用,如果不是定值,我们就可以通过增减配数的方法,构成和或者乘积是定值的情况,然后再使用基本不等式求值即可。
2、1的妙用
这种题型格式比较固定,一般是两个变量为正实数,有一个代数式的值已知,求另一个代数式的最值问题,根据任意数乘以1以后数值不变的性质,已知和所求式相乘,变成互为倒数式的形式,然后再使用基本不等式求值即可。
扩展资料:
均值定理,又称基本不等式。主要内容为在正实数范围内,若干数的几何平均数不超过他们的算术平均数,且当这些数全部相等时,算术平均数与几何平均数相等。均值定理是高中数学学习中的一个非常重要的知识点,在函数求最值问题中有十分频繁的应用。
基本不等式的实际应用:
有关函数最值的实际问题的解题技巧:
1、根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值。
2、设变量时一般要把求最大值或最小值的变量定义为函数。
3、解应用题时,一定要注意变量的实际意义及其取值范围。
4、在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解。
基本不等式的综合应用:
基本不等式是高考考查的热点,常以选择题、填空题的形式出现.通常以不等式为载体综合考查函数、方程、三角函数、立体几何、解析几何等问题.主要有以下几种命题方式:
1、应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解。
2、条件不等式问题.通过条件转化成能利用基本不等式的形式求解。
3、求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围。
本文来自作者[赫宏旭]投稿,不代表泰博号立场,如若转载,请注明出处:https://www.staplesadv.cn/ds/18252.html
评论列表(3条)
我是泰博号的签约作者“赫宏旭”
本文概览:1、如果是应用题就要先理清楚思路,然后列出不等式,最后再解不等式;如果是解不等式的计算题,就直接写“解”,开始写出计算过程。2、计算过程就是利用等式的性质,把不等式的等价式子写...
文章不错《基本不等式十大解题技巧》内容很有帮助